

Code No:43063 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **II.B.TECH - I SEMESTER REGULAR EXAMINATIONS NOVEMBER, 2009 MATHEMATICS-II** (Common to CE, CHEM, MMT, AE, BT) **Time: 3hours** Max.Marks:80 **Answer any FIVE questions** All questions carry equal marks - - -1. a) Find the rank of the matrix $A = \begin{pmatrix} 1 & 4 & 9 & 6 \\ 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 3 \end{pmatrix}$ by reducing it to normal form. 3x + 3y + 2z = 1x+2y=410y+3z=-2 and hence solve them. b) Test for the consistency of [8+8]2x - 3y - z = 5

- 2. Find the Eigen value and Eigen vectors for the matrix $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$. Also Verify Cayley –Hamilton theorem for the matrix A. [16]
- 3. a) Prove that the inverse of an orthogonal matrix is orthogonal and its transpose is also orthogonal .
 - b) Reduce the quadratic form $2x_1x_2 + 2x_2x_3 + 2x_3x_1$ into canonical form. Classify the quadratic form. [8+8]
- 4. a) Find the Fourier series to represent $f(x) = e^{ax} in \pi < x < \pi$

b) Develop
$$\sin\left(\frac{\pi x}{k}\right)$$
 in half range cosine series in $0 < x < k$. [8+8]

- 5. a) Form the partial differential equation by eliminating the arbitrary constants a and b from z= ax+by+ab
 - b) Solve the partial differential equation $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$
 - c) Solve the P.D.E. for $z = px + qy 2\sqrt{pq}$. [5+5+6]

6. Solve $\frac{\partial t}{\partial \mu} = c^2 \frac{\partial^2 \mu}{\partial r^2}$ given that	R07	SET-4
a) $\mu = 0$ when $x = 0$ when $x = 0$ and $x = 1$ for all t.		
b) $\mu = 3 \sin \frac{\pi x}{l}$ when t = 0 for all x in 0< x<1		[8+8]
7. a) prove that the Fourier transform is linear b) Find the Fourier cosine transform of $2e^{-3x} + 3e^{-2x}$.		[8+8]
8. a) Find i) $z\{a^n \cos \theta\}$ ii) $z\{a^n \sin \theta\}$		
b) Using the z – transform solve		
$\mu_{n+2} + 4(\mu_{n+1}) + 3\mu_n = 3$ given,		50.03
That $\mu_0 = 0$ and $\mu_1 = 1$.		[8+8]
